[Article] Social Network De-anonymization Under Scale-free User Relations
نویسندگان
چکیده
We tackle the problem of user de-anonymization in social networks characterized by scale-free relationships between users. The network is modeled as a graph capturing the impact of power-law node degree distribution, which is a fundamental and quite common feature of social networks. Using this model, we present a de-anonymization algorithm that exploits an initial set of users, called seeds, that are known a priori. By employing bootstrap percolation theory and a novel graph slicing technique, we develop a rigorous analysis of the proposed algorithm under asymptotic conditions. Our analysis shows that large inhomogeneities in the node degree lead to a dramatic reduction of the size of the seed set that is necessary to successfully identify all other users. We characterize this set size when seeds are properly selected based on the node degree as well as when seeds are uniformly distributed. We prove that, given n nodes, the number of seeds required for network de-anonymization can be as small as n , for any small > 0. Additionally, we discuss the complexity of our de-anonymization algorithm and validate our results through numerical experiments on a real social network graph.
منابع مشابه
On Your Social Network De-anonymizablity: Quantification and Large Scale Evaluation with Seed Knowledge
In this paper, we conduct the first comprehensive quantification on the perfect de-anonymizability and partial deanonymizability of real world social networks with seed information in general scenarios, where a social network can follow an arbitrary distribution model. This quantification provides the theoretical foundation for existing structure based de-anonymization attacks (e.g., [1][2][3])...
متن کاملPrivacy Leakage via De-anonymization and Aggregation in Heterogeneous Social Networks
Though representing a promising approach for personalization, targeting, and recommendation, aggregation of user profiles from multiple social networks will inevitably incur a serious privacy leakage issue. In this paper, we propose a Novel Heterogeneous De-anonymization Scheme (NHDS) aiming at de-anonymizing heterogeneous social networks. NHDS firstly leverages the network graph structure to s...
متن کاملDe-anonymization of Social Networks with Communities: When Quantifications Meet Algorithms
A crucial privacy-driven issue nowadays is re-identifying anonymized social networks by mapping them to correlated cross-domain auxiliary networks. Prior works are typically based on modeling social networks as random graphs representing users and their relations, and subsequently quantify the quality of mappings through cost functions that are proposed without sufficient rationale. Also, it re...
متن کاملDe-anonymizing social networks
The problem of de-anonymizing social networks is to identify the same users between two anonymized social networks [7] (Figure 1). Network de-anonymization task is of multifold significance, with user profile enrichment as one of its most promising applications. After the deanonymization and alignment, we can aggregate and enrich user profile information from different online networking service...
متن کاملDe-anonymization of Mobility Trajectories: Dissecting the Gaps between Theory and Practice
Human mobility trajectories are increasingly collected by ISPs to assist academic research and commercial applications. Meanwhile, there is a growing concern that individual trajectories can be de-anonymized when the data is shared, using information from external sources (e.g. online social networks). To understand this risk, prior works either estimate the theoretical privacy bound or simulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017